Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
PLoS One ; 19(3): e0298437, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38498459

RESUMEN

Ionizing radiation (IR) and oncolytic viruses are both used to treat cancer, and the effectiveness of both agents depends upon stimulating an immune response against the tumor. In this study we tested whether combining image guided ionizing radiation (IG-IR) with an oncolytic vaccinia virus (VACV) could yield a better therapeutic response than either treatment alone. ΔF4LΔJ2R VACV grew well on irradiated human and mouse breast cancer cells, and the virus can be combined with 4 or 8 Gy of IR to kill cells in an additive or weakly synergistic manner. To test efficacy in vivo we used immune competent mice bearing orthotopic TUBO mammary tumors. IG-IR worked well with 10 Gy producing 80% complete responses, but this was halved when the tumors were treated with VACV starting 2 days after IG-IR. VACV monotherapy was ineffective in this model. The antagonism was time dependent as waiting for 21 days after IG-IR eliminated the inhibitory effect but without yielding any further benefits over IR alone. In irradiated tumors, VACV replication was also lower, suggesting that irradiation created an environment that did not support infection as well in vivo as in vitro. A study of how four different treatment regimens affected the immune composition of the tumor microenvironment showed that treating irradiated tumors with VACV altered the immunological profiles in tumors exposed to IR or VACV alone. We detected more PD-1 and PD-L1 expression in tumors exposed to IR+VACV but adding an αPD-1 antibody to the protocol did not change the way VACV interferes with IG-IR therapy. VACV encodes many immunosuppressive gene products that may interfere with the ability of radiotherapy to induce an effective anti-tumor immune response through the release of danger-associated molecular patterns. These data suggest that infecting irradiated tumors with VACV, too soon after exposure, may interfere in the innate and linked adaptive immune responses that are triggered by radiotherapy to achieve a beneficial impact.


Asunto(s)
Neoplasias Mamarias Animales , Viroterapia Oncolítica , Virus Oncolíticos , Radioterapia Guiada por Imagen , Vaccinia , Humanos , Animales , Ratones , Virus Vaccinia/genética , Virus Oncolíticos/genética , Neoplasias Mamarias Animales/radioterapia , Inmunoterapia , Viroterapia Oncolítica/métodos , Microambiente Tumoral
2.
Kidney360 ; 5(3): 471-480, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38433340

RESUMEN

Pictured, described, and speculated on, for close to 400 years, the function of the rectal gland of elasmobranchs remained unknown. In the late 1950s, Burger discovered that the rectal gland of Squalus acanthias secreted an almost pure solution of sodium chloride, isosmotic with blood, which could be stimulated by volume expansion of the fish. Twenty five years later, Stoff discovered that the secretion of the gland was mediated by adenyl cyclase. Studies since then have shown that vasoactive intestinal peptide (VIP) is the neurotransmitter responsible for activating adenyl cyclase; however, the amount of circulating VIP does not change in response to volume expansion. The humoral factor involved in activating the secretion of the gland is C-type natriuretic peptide, secreted from the heart in response to volume expansion. C-type natriuretic peptide circulates to the gland where it stimulates the release of VIP from nerves within the gland, but it also has a direct effect, independent of VIP. Sodium, potassium, and chloride are required for the gland to secrete, and the secretion of the gland is inhibited by ouabain or furosemide. The current model for the secretion of chloride was developed from this information. Basolateral NaKATPase maintains a low intracellular concentration of sodium, which establishes the large electrochemical gradient for sodium directed into the cell. Sodium moves from the blood into the cell (together with potassium and chloride) down this electrochemical gradient, through a coupled sodium, potassium, and two chloride cotransporter (NKCC1). On activation, chloride moves from the cell into the gland lumen, down its electrical gradient through apical cystic fibrosis transmembrane regulator. The fall in intracellular chloride leads to the phosphorylation and activation of NKCC1 that allows more chloride into the cell. Transepithelial sodium secretion into the lumen is driven by an electrical gradient through a paracellular pathway. The aim of this review was to examine the history of the origin of this model for the transport of chloride and suggest that it is applicable to many epithelia that transport chloride, both in resorptive and secretory directions.


Asunto(s)
Tiburones , Animales , Tiburones/metabolismo , Glándula de Sal/metabolismo , Cloruros/metabolismo , Cloruros/farmacología , Cazón/metabolismo , Adenilil Ciclasas/metabolismo , Adenilil Ciclasas/farmacología , Péptido Natriurético Tipo-C/metabolismo , Péptido Natriurético Tipo-C/farmacología , Péptido Intestinal Vasoactivo/metabolismo , Péptido Intestinal Vasoactivo/farmacología , Sodio/metabolismo , Sodio/farmacología , Potasio/metabolismo , Potasio/farmacología
3.
Proc Natl Acad Sci U S A ; 121(8): e2315653121, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38346199

RESUMEN

Monkeypox virus (MPXV) infections in humans cause neurological disorders while studies of MPXV-infected animals indicate that the virus penetrates the brain. Pyroptosis is an inflammatory type of regulated cell death, resulting from plasma membrane rupture (PMR) due to oligomerization of cleaved gasdermins to cause membrane pore formation. Herein, we investigated the human neural cell tropism of MPXV compared to another orthopoxvirus, vaccinia virus (VACV), as well as its effects on immune responses and cell death. Astrocytes were most permissive to MPXV (and VACV) infections, followed by microglia and oligodendrocytes, with minimal infection of neurons based on plaque assays. Aberrant morphological changes were evident in MPXV-infected astrocytes that were accompanied with viral protein (I3) immunolabelling and detection of over 125 MPXV-encoded proteins in cell lysates by mass spectrometry. MPXV- and VACV-infected astrocytes showed increased expression of immune gene transcripts (IL12, IRF3, IL1B, TNFA, CASP1, and GSDMB). However, MPXV infection of astrocytes specifically induced proteolytic cleavage of gasdermin B (GSDMB) (50 kDa), evident by the appearance of cleaved N-terminal-GSDMB (30 kDa) and C-terminal- GSDMB (18 kDa) fragments. GSDMB cleavage was associated with release of lactate dehydrogenase and increased cellular nucleic acid staining, indicative of PMR. Pre-treatment with dimethyl fumarate reduced cleavage of GSDMB and associated PMR in MPXV-infected astrocytes. Human astrocytes support productive MPXV infection, resulting in inflammatory gene induction with accompanying GSDMB-mediated pyroptosis. These findings clarify the recently recognized neuropathogenic effects of MPXV in humans while also offering potential therapeutic options.


Asunto(s)
Monkeypox virus , Mpox , Animales , Humanos , Monkeypox virus/fisiología , Piroptosis , Astrocitos , Gasderminas
4.
Clin Microbiol Infect ; 29(12): 1502-1507, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37507009

RESUMEN

BACKGROUND: Monkeypox virus (MPXV) is an emerging zoonotic virus that has had on-going public health impacts in endemic regions of Central and West Africa for over a half-century. Historically, the MPXV clade endemic in regions of Central Africa is associated with higher morbidity and mortality as compared with the clade endemic in West Africa. OBJECTIVES: Here, we review the virological characteristics of MPXV and discuss potential relationships between virulence factors and clade- (and subclade-) specific differences in virulence and transmission patterns. SOURCES: Targeted search was conducted in PubMed using ((monkeypox virus) OR (Orthopoxvirus)) AND (zoonosis)) OR ((monkeypox) OR (human mpox). CONTENT: Forty-seven references were considered that included three publicly available data reports and/or press releases, one book chapter, and 44 published manuscripts. IMPLICATIONS: Although zoonosis has been historically linked to emergence events in humans, epidemiological analyses of more recent outbreaks have identified increasing frequencies of human-to-human transmission. Furthermore, viral transmission during the 2022 global human mpox outbreak, caused by a recently identified MPXV subclade, has relied exclusively on human-to-human contact with no known zoonotic link.


Asunto(s)
Monkeypox virus , Mpox , Humanos , Monkeypox virus/genética , Mpox/epidemiología , Virulencia , Factores de Virulencia , África Occidental
5.
Cancers (Basel) ; 15(13)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37444452

RESUMEN

Glioblastoma (GBM) is a malignant brain cancer refractory to the current standard of care, prompting an extensive search for novel strategies to improve outcomes. One approach under investigation is oncolytic virus (OV) therapy in combination with radiotherapy. In addition to the direct cytocidal effects of radiotherapy, radiation induces cellular senescence in GBM cells. Senescent cells cease proliferation but remain viable and are implicated in promoting tumor progression. The interaction of viruses with senescent cells is nuanced; some viruses exploit the senescent state to their benefit, while others are hampered, indicating senescence-associated antiviral activity. It is unknown how radiation-induced cellular senescence may impact the oncolytic properties of OVs based on the vaccinia virus (VACV) that are used in combination with radiotherapy. To better understand this, we induced cellular senescence by treating GBM cells with radiation, and then evaluated the growth kinetics, infectivity, and cytotoxicity of an oncolytic VACV, ∆F4LΔJ2R, as well as wild-type VACV in irradiated senescence-enriched and non-irradiated human GBM cell lines. Our results show that both viruses display attenuated oncolytic activities in irradiated senescence-enriched GBM cell populations compared to non-irradiated controls. These findings indicate that radiation-induced cellular senescence is associated with antiviral activity and highlight important considerations for the combination of VACV-based oncolytic therapies with senescence-inducing agents such as radiotherapy.

6.
Microbiol Spectr ; 11(4): e0525622, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37289096

RESUMEN

The 50% plaque reduction neutralization assay (PRNT50) has been previously used to assess the neutralization capacity of donor plasma against wild-type and variant of concern (VOC) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Emerging data suggest that plasma with an anti-SARS-CoV-2 level of ≥2 × 104 binding antibody units/mL (BAU/mL) protects against SARS-CoV-2 Omicron BA.1 infection. Specimens were collected using a cross-sectional random sampling approach. For PRNT50 studies, 63 previously analyzed specimens by PRNT50 versus SARS-CoV-2 wild-type, Alpha, Beta, Gamma, and Delta were analyzed by PRNT50 versus Omicron BA.1. The 63 specimens plus 4,390 specimens (randomly sampled regardless of serological evidence of infection) were also tested using the Abbott SARS-CoV-2 IgG II Quant assay (anti-spike [S]; Abbott, Chicago, IL, USA; Abbott Quant assay). In the vaccinated group, the percentages of specimens with any measurable PRNT50 versus wild-type or VOC were wild type (21/25 [84%]), Alpha (19/25 [76%]), Beta (18/25 [72%]), Gamma (13/25 [52%]), Delta (19/25 [76%]), and Omicron BA.1 (9/25 [36%]). In the unvaccinated group, the percentages of specimens with any measurable PRNT50 versus wild type or VOC were wild-type SARS-CoV-2 (16/39 [41%]), Alpha (16/39 [41%]), Beta (10/39 [26%]), Gamma (9/39 [23%]), Delta (16/39 [41%]), and Omicron BA.1 (0/39) (Fisher's exact tests, vaccinated versus unvaccinated for each variant, P < 0.05). None of the 4,453 specimens tested by the Abbott Quant assay had a binding capacity of ≥2 × 104 BAU/mL. Vaccinated donors were more likely than unvaccinated donors to neutralize Omicron when assessed by a PRNT50 assay. IMPORTANCE SARS-CoV-2 Omicron emergence occurred in Canada during the period from November 2021 to January 2022. This study assessed the ability of donor plasma collected earlier (January to March 2021) to generate any neutralizing capacity against Omicron BA.1 SARS-CoV-2. Vaccinated individuals, regardless of infection status, were more likely to neutralize Omicron BA.1 than unvaccinated individuals. This study then used a semiquantitative binding antibody assay to screen a larger number of specimens (4,453) for individual specimens that might have high-titer neutralizing capacity against Omicron BA.1. None of the 4,453 specimens tested by the semiquantitative SARS-CoV-2 assay had a binding capacity suggestive of a high-titer neutralizing capacity against Omicron BA.1. These data do not imply that Canadians lacked immunity to Omicron BA.1 during the study period. Immunity to SARS-CoV-2 is complex, and there is still no wide consensus on correlation of protection to SARS-CoV-2.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Estudios Transversales , Canadá , Donantes de Sangre , Anticuerpos Antivirales , Anticuerpos Neutralizantes
7.
Viruses ; 15(6)2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37376610

RESUMEN

Congenital infections with SARS-CoV-2 are uncommon. We describe two confirmed congenital SARS-CoV-2 infections using descriptive, epidemiologic and standard laboratory methods and in one case, viral culture. Clinical data were obtained from health records. Nasopharyngeal (NP) specimens, cord blood and placentas when available were tested by reverse transcriptase real-time PCR (RT-PCR). Electron microscopy and histopathological examination with immunostaining for SARS-CoV-2 was conducted on the placentas. For Case 1, placenta, umbilical cord, and cord blood were cultured for SARS-CoV-2 on Vero cells. This neonate was born at 30 weeks, 2 days gestation by vaginal delivery. RT-PCR tests were positive for SARS-CoV-2 from NP swabs and cord blood; NP swab from the mother and placental tissue were positive for SARS-CoV-2. Placental tissue yielded viral plaques with typical morphology for SARS-CoV-2 at 2.8 × 102 pfu/mL confirmed by anti-spike protein immunostaining. Placental examination revealed chronic histiocytic intervillositis with trophoblast necrosis and perivillous fibrin deposition in a subchorionic distribution. Case 2 was born at 36 weeks, 4 days gestation. RT-PCR tests from the mother and infant were all positive for SARS-CoV-2, but placental pathology was normal. Case 1 may be the first described congenital case with SARS-CoV-2 cultivated directly from placental tissue.


Asunto(s)
COVID-19 , Complicaciones Infecciosas del Embarazo , Embarazo , Chlorocebus aethiops , Recién Nacido , Animales , Femenino , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Placenta , Células Vero , Trofoblastos , Complicaciones Infecciosas del Embarazo/diagnóstico , Transmisión Vertical de Enfermedad Infecciosa
8.
J Gen Virol ; 104(5)2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37195882

RESUMEN

Poxviridae is a family of enveloped, brick-shaped or ovoid viruses. The genome is a linear molecule of dsDNA (128-375 kbp) with covalently closed ends. The family includes the sub-families Entomopoxvirinae, whose members have been found in four orders of insects, and Chordopoxvirinae, whose members are found in mammals, birds, reptiles and fish. Poxviruses are important pathogens in various animals, including humans, and typically result in the formation of lesions, skin nodules, or disseminated rash. Infections can be fatal. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Poxviridae, which is available at ictv.global/report/poxviridae.


Asunto(s)
Poxviridae , Animales , Humanos , Poxviridae/genética , Peces , Aves , Mamíferos , Reptiles , Genoma Viral , Replicación Viral , Virión
9.
Cancer Lett ; 562: 216169, 2023 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-37061120

RESUMEN

Glioblastoma (GB) is a malignant and immune-suppressed brain cancer that remains incurable despite the current standard of care. Radiotherapy is a mainstay of GB treatment, however invasive cancer cells outside the irradiated field and radioresistance preclude complete eradication of GB cells. Oncolytic virus therapy harnesses tumor-selective viruses to spread through and destroy tumors while stimulating antitumor immune responses, and thus has potential for use following radiotherapy. We demonstrate that oncolytic ΔF4LΔJ2R vaccinia virus (VACV) replicates in and induces cytotoxicity of irradiated brain tumor initiating cells in vitro. Importantly, a single 10 Gy dose of radiation combined with ΔF4LΔJ2R VACV produced considerably superior anticancer effects relative to either monotherapy when treating immune-competent orthotopic CT2A-luc mouse models-significantly extending survival and curing the majority of mice. Mice cured by the combination displayed significantly increased survival relative to naïve age-matched controls following intracranial tumor challenge, with some complete rejections. Further, the combination therapy was associated with an increased ratio of CD8+ effector T cells to regulatory T cells compared to either monotherapy. This study validates the use of radiation with an oncolytic ΔF4LΔJ2R VACV to improve treatment of this malignant brain cancer.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Viroterapia Oncolítica , Virus Oncolíticos , Ratones , Animales , Virus Oncolíticos/fisiología , Virus Vaccinia/genética , Glioblastoma/terapia , Neoplasias Encefálicas/terapia , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral
10.
Viruses ; 15(2)2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36851570

RESUMEN

The ongoing global Monkeypox outbreak that started in the spring of 2022 has reinforced the importance of protecting the population using live virus vaccines based on the vaccinia virus (VACV). Smallpox also remains a biothreat and although some U.S. military personnel are immunized with VACV, safety concerns limit its use in other vulnerable groups. Consequently, there is a need for an effective and safer, single dose, live replicating vaccine against both viruses. One potential approach is to use the horsepox virus (HPXV) as a vaccine. Contemporary VACV shares a common ancestor with HPXV, which from the time of Edward Jenner and through the 19th century, was extensively used to vaccinate against smallpox. However, it is unknown if early HPXV-based vaccines exhibited different safety and efficacy profiles compared to modern VACV. A deeper understanding of HPXV as a vaccine platform may allow the construction of safer and more effective vaccines against the poxvirus family. In a proof-of-concept study, we vaccinated cynomolgus macaques with TNX-801, a recombinant chimeric horsepox virus (rcHPXV), and showed that the vaccine elicited protective immune responses against a lethal challenge with monkeypox virus (MPXV), strain Zaire. The vaccine was well tolerated and protected animals from the development of lesions and severe disease. These encouraging data support the further development of TNX-801.


Asunto(s)
Mpox , Orthopoxvirus , Infecciones por Poxviridae , Viruela , Virus de la Viruela , Animales , Orthopoxvirus/genética , Mpox/prevención & control , Viruela/prevención & control , Virus de la Viruela Vacuna , Infecciones por Poxviridae/prevención & control , Infecciones por Poxviridae/veterinaria , Vacunación , Virus Vaccinia , Macaca fascicularis , Vacunas Atenuadas
11.
Med Ultrason ; 25(2): 175-188, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-36047427

RESUMEN

Diagnostic ultrasound in obstetrics and gynaecology has experienced a fantastic evolution during the past seven decades. Initial steps with A-mode technology were followed by B-mode and B-mode real-time imaging, then by Doppler and colour Doppler ultrasound, and finally by 3D/4D ultrasound. Other evolutionary steps were the development of high-resolution transabdominal and transvaginal transducers providing high quality images in the first, second and third trimesters of pregancy, as well as in gynaecology and breast imaging.The progression from two-dimensional (2D) to three-dimensional ultrasound (3D) and 3D real-time imaging (4D) has brought new options in displaying anatomical structures. In comparison with CT or MRI, it is not a static but functional technique, cheap and safe, and applicable at any time.


Asunto(s)
Ginecología , Obstetricia , Ultrasonografía , Ultrasonografía/historia , Ultrasonografía/normas , Obstetricia/historia , Obstetricia/instrumentación , Ginecología/historia , Ginecología/instrumentación , Humanos , Femenino , Embarazo , Imagenología Tridimensional , Seguridad de Equipos , Historia del Siglo XX , Historia del Siglo XXI
12.
Am J Physiol Heart Circ Physiol ; 323(6): H1262-H1269, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36367689

RESUMEN

Myocardial pathologies resulting from SARS-CoV-2 infections are consistently rising with mounting case rates and reinfections; however, the precise global burden is largely unknown and will have an unprecedented impact. Understanding the mechanisms of COVID-19-mediated cardiac injury is essential toward the development of cardioprotective agents that are urgently needed. Assessing novel therapeutic strategies to tackle COVID-19 necessitates an animal model that recapitulates human disease. Here, we sought to compare SARS-CoV-2-infected animals with patients with COVID-19 to identify common mechanisms of cardiac injury. Two-month-old hamsters were infected with either the ancestral (D614) or Delta variant (B.1.617.2) of SARS-CoV-2 for 2 days, 7 days, and/or 14 days. We measured viral RNA and cytokine expression at the earlier time points to capture the initial stages of infection in the lung and heart. We assessed myocardial angiotensin-converting enzyme 2 (ACE2), the entry receptor for the SARS-CoV-2 virus, and cardioprotective enzyme, as well as markers for inflammatory cell infiltration in the hamster hearts at days 7 and 14. In parallel, human hearts were stained for ACE2, viral nucleocapsid, and inflammatory cells. Indeed, we identify myocardial ACE2 downregulation and myeloid cell burden as common events in both hamsters and humans infected with SARS-CoV-2, and we propose targeting downstream ACE2 downregulation as a therapeutic avenue that warrants clinical investigation.NEW & NOTEWORTHY Cardiac manifestations of COVID-19 in humans are mirrored in the SARS-CoV-2 hamster model, recapitulating myocardial damage, ACE2 downregulation, and a consistent pattern of immune cell infiltration independent of viral dose and variant. Therefore, the hamster model is a valid approach to study therapeutic strategies for COVID-19-related heart disease.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Animales , Humanos , Cricetinae , Lactante , SARS-CoV-2 , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Inflamación
14.
Microbiol Spectr ; 10(5): e0281122, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36125288

RESUMEN

There is evidence that COVID-19 convalescent plasma may improve outcomes of patients with impaired immune systems; however, more clinical trials are required. Although we have previously used a 50% plaque reduction/neutralization titer (PRNT50) assay to qualify convalescent plasma for clinical trials and virus-like particle (VLP) assays to validate PRNT50 methodologies, these approaches are time-consuming and expensive. Here, we characterized the ability of the Abbott severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) IgG II Quant assay to identify high- and low-titer plasma for wild-type and variant (Alpha, Beta, Gamma, and Delta) SARS-CoV-2 characterized by both VLP assays and PRNT50. Plasma specimens previously tested in wild-type, Alpha, Beta, Gamma, and Delta VLP neutralization assays were selected based on availability. Selected specimens were evaluated by the Abbott SARS-CoV-2 IgG II Quant assay [Abbott anti-Spike (S); Abbott, Chicago, IL], and values in units per milliliter were converted to binding antibody units (BAU) per milliliter. Sixty-three specimens were available for analysis. Abbott SARS-CoV-2 IgG II Quant assay values in BAU per milliliter were significantly different between high- and low-titer specimens for wild-type (Mann-Whitney U = 42, P < 0.0001), Alpha (Mann-Whitney U = 38, P < 0.0001), Beta (Mann-Whitney U = 29, P < 0.0001), Gamma (Mann-Whitney U = 0, P < 0.0001), and Delta (Mann-Whitney U = 42, P < 0.0001). A conservative approach using the highest 95% confidence interval (CI) values from wild-type and variant of concern (VOC) SARS-CoV-2 experiments would identify a potential Abbott SARS-CoV-2 IgG II Quant assay cutoff of ≥7.1 × 103 BAU/mL. IMPORTANCE The United States Food and Drug Administration (FDA) issued an Emergency Use Authorization (EUA) for the use of COVID-19 convalescent plasma (CCP) to treat hospitalized patients with COVID-19 in August 2020. However, by 4 February 2021, the FDA had revised the convalescent plasma EUA. This revision limited the authorization for high-titer COVID-19 convalescent plasma and restricted patient groups to hospitalized patients with COVID-19 early in their disease course or hospitalized patients with impaired humoral immunity. Traditionally our group utilized 50% plaque reduction/neutralization titer (PRNT50) assays to qualify CCP in Canada. Since that time, the Abbott SARS-CoV-2 IgG II Quant assay (Abbott, Chicago IL) was developed for the qualitative and quantitative determination of IgG against the SARS-CoV-2. Here, we characterized the ability of the Abbott SARS-CoV-2 IgG II Quant assay to identify high- and low-titer plasma for wild-type and variant (Alpha, Beta, Gamma, and Delta) SARS-CoV-2.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Anticuerpos Antivirales , Inmunoglobulina G , Anticuerpos Neutralizantes
16.
Med Ultrason ; 24(4): 434-450, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35574917

RESUMEN

The history of the European Federation of Societies in Ultrasound in Medicine and Biology (EFSUMB) is closely related to the general history of ultrasound. In the presented paper the physical background and history of technologies including A-mode, Time motion or M-mode, 2D Imaging (B-mode) are summarized. In addition, ultrasound tissue characterization, Doppler ultrasound, 3D and 4D ultrasound, intracavitary and endoscopic ultrasound, interventional ultrasound, ultrasonic therapy, contrast enhanced ultrasound (CEUS) and key developments in echocardiography are discussed.


Asunto(s)
Aniversarios y Eventos Especiales , Ultrasonografía Intervencional , Humanos , Medios de Contraste , Sociedades Médicas , Ultrasonografía/métodos
17.
BMC Biol ; 20(1): 88, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35421982

RESUMEN

BACKGROUND: Despite the excellent fossil record of cephalopods, their early evolution is poorly understood. Different, partly incompatible phylogenetic hypotheses have been proposed in the past, which reflected individual author's opinions on the importance of certain characters but were not based on thorough cladistic analyses. At the same time, methods of phylogenetic inference have undergone substantial improvements. For fossil datasets, which typically only include morphological data, Bayesian inference and in particular the introduction of the fossilized birth-death model have opened new possibilities. Nevertheless, many tree topologies recovered from these new methods reflect large uncertainties, which have led to discussions on how to best summarize the information contained in the posterior set of trees. RESULTS: We present a large, newly compiled morphological character matrix of Cambrian and Ordovician cephalopods to conduct a comprehensive phylogenetic analysis and resolve existing controversies. Our results recover three major monophyletic groups, which correspond to the previously recognized Endoceratoidea, Multiceratoidea, and Orthoceratoidea, though comprising slightly different taxa. In addition, many Cambrian and Early Ordovician representatives of the Ellesmerocerida and Plectronocerida were recovered near the root. The Ellesmerocerida is para- and polyphyletic, with some of its members recovered among the Multiceratoidea and early Endoceratoidea. These relationships are robust against modifications of the dataset. While our trees initially seem to reflect large uncertainties, these are mainly a consequence of the way clade support is measured. We show that clade posterior probabilities and tree similarity metrics often underestimate congruence between trees, especially if wildcard taxa are involved. CONCLUSIONS: Our results provide important insights into the earliest evolution of cephalopods and clarify evolutionary pathways. We provide a classification scheme that is based on a robust phylogenetic analysis. Moreover, we provide some general insights on the application of Bayesian phylogenetic inference on morphological datasets. We support earlier findings that quartet similarity metrics should be preferred over the Robinson-Foulds distance when higher-level phylogenetic relationships are of interest and propose that using a posteriori pruned maximum clade credibility trees help in assessing support for phylogenetic relationships among a set of relevant taxa, because they provide clade support values that better reflect the phylogenetic signal.


Asunto(s)
Cefalópodos , Animales , Teorema de Bayes , Cefalópodos/genética , Fósiles , Filogenia , Probabilidad
18.
PLoS Pathog ; 18(3): e1010392, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35290406

RESUMEN

Poxvirus genomes consist of a linear duplex DNA that ends in short inverted and complementary hairpin structures. These elements also encode loops and mismatches that likely serve a role in genome packaging and perhaps replication. We constructed mutant vaccinia viruses (VACV) where the native hairpins were replaced by altered forms and tested effects on replication, assembly, and virulence. Our studies showed that structure, not sequence, likely determines function as one can replace an Orthopoxvirus (VACV) hairpin with one copied from a Leporipoxvirus with no effect on growth. Some loops can be deleted from VACV hairpins with little effect, but VACV bearing too few mismatches grew poorly and we couldn't recover viruses lacking all mismatches. Further studies were conducted using a mutant bearing only one of six mismatches found in wild-type hairpins (SΔ1Δ3-6). This virus grew to ~20-fold lower titers, but neither DNA synthesis nor telomere resolution was affected. However, the mutant exhibited a particle-to-PFU ratio 10-20-fold higher than wild-type viruses and p4b/4b core protein processing was compromised, indicating an assembly defect. Electron microscopy showed that SΔ1Δ3-6 mutant development was blocked at the immature virus (IV) stage, which phenocopies known effects of I1L mutants. Competitive DNA binding assays showed that recombinant I1 protein had less affinity for the SΔ1Δ3-6 hairpin than the wild-type hairpin. The SΔ1Δ3-6 mutant was also attenuated when administered to SCID-NCR mice by tail scarification. Mice inoculated with viruses bearing wild-type hairpins exhibited a median survival of 30-37 days, while mice infected with SΔ1Δ3-6 virus survived >70 days. Persistent infections favor genetic reversion and genome sequencing detected one example where a small duplication near the hairpin tip likely created a new loop. These observations show that mismatches serve a critical role in genome packaging and provide new insights into how VACV "flip and flop" telomeres are arranged.


Asunto(s)
Nucleótidos , Virus Vaccinia , Animales , ADN , Ratones , Ratones SCID , Telómero , Virus Vaccinia/genética , Virión/genética , Replicación Viral/genética
19.
Sci Rep ; 12(1): 5418, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35354854

RESUMEN

To explore the potential modes of Severe Acute Respiratory Coronavirus-2 (SARS-CoV-2) transmission, we collected 535 diverse clinical and environmental samples from 75 infected hospitalized and community patients. Infectious SARS-CoV-2 with quantitative burdens varying from 5 plaque-forming units/mL (PFU/mL) up to 1.0 × 106 PFU/mL was detected in 151/459 (33%) of the specimens assayed and up to 1.3 × 106 PFU/mL on fomites with confirmation by plaque morphology, PCR, immunohistochemistry, and/or sequencing. Infectious virus in clinical and associated environmental samples correlated with time since symptom onset with no detection after 7-8 days in immunocompetent hosts and with N-gene based Ct values ≤ 25 significantly predictive of yielding plaques in culture. SARS-CoV-2 isolated from patient respiratory tract samples caused illness in a hamster model with a minimum infectious dose of ≤ 14 PFU. Together, our findings offer compelling evidence that large respiratory droplet and contact (direct and indirect i.e., fomites) are important modes of SARS-CoV-2 transmission.


Asunto(s)
COVID-19 , Humanos , Reacción en Cadena de la Polimerasa , Sistema Respiratorio , SARS-CoV-2/genética
20.
Sci Rep ; 12(1): 3484, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35241703

RESUMEN

Determining the viral load and infectivity of SARS-CoV-2 in macroscopic respiratory droplets, bioaerosols, and other bodily fluids and secretions is important for identifying transmission modes, assessing risks and informing public health guidelines. Here we show that viral load of SARS-CoV-2 Ribonucleic Acid (RNA) in participants' naso-pharyngeal (NP) swabs positively correlated with RNA viral load they emitted in both droplets >10 [Formula: see text] and bioaerosols <10 [Formula: see text] directly captured during the combined expiratory activities of breathing, speaking and coughing using a standardized protocol, although the NP swabs had [Formula: see text] 10[Formula: see text] more RNA on average. By identifying highly-infectious individuals (maximum of 18,000 PFU/mL in NP), we retrieved higher numbers of SARS-CoV-2 RNA gene copies in bioaerosol samples (maximum of 4.8[Formula: see text] gene copies/mL and minimum cycle threshold of 26.2) relative to other studies. However, all attempts to identify infectious virus in size-segregated droplets and bioaerosols were negative by plaque assay (0 of 58). This outcome is partly attributed to the insufficient amount of viral material in each sample (as indicated by SARS-CoV-2 gene copies) or may indicate no infectious virus was present in such samples, although other possible factors are identified.


Asunto(s)
Aerosoles , Tos , Respiración , SARS-CoV-2/aislamiento & purificación , Habla , Carga Viral , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA